silica gel; 0.7 g. of 2,5-diphenylhexane was obtained, n^{∞_D} 1.5385 (literature²³ n^{∞_D} 1.5440).

Anal. Calcd. for C₁₈H₂₂: C, 90.70; H, 9.30. Found: C, 90.36; H, 9.10.

(23) G. Dupont, Compt. rend., 156, 1623 (1913).

Acknowledgment.—The authors are indebted to Miss Hildegard Beck for the elementary analyses and to Mr. W. S. Postl for the hydrogenolysis experiments.

EVANSTON, ILLINOIS

COMMUNICATIONS TO THE EDITOR

EVIDENCE FOR QUADRIVALENT CURIUM. II. CURIUM TETRAFLUORIDE¹

Sir:

We wish to report the preparation and some properties of a new compound of curium, the tetrafluoride, in which curium has unequivocally the valence of four. Curium tetrafluoride was made by treatment of curium trifluoride with gaseous fluorine at elevated temperatures, and lattice constants have been measured for the monoclinic structure obtained.

Cm²⁴⁴, an alpha emitter of 18.4 years² half-life, was used in this investigation and was a fraction of the same curium stock previously employed to prepare CmO_2 .³ The Cm^{242} content was only ~ 0.004 mass per cent.

subsequently using the same camera, Eastman Type A film, and filtered copper radiation. The longer exposure gave a picture of generally poorer quality, due probably to radiation damage to the crystals.

In Table I are listed X-ray data for several tetrafluorides and their lattice constants in Å. units. All of these show the same monoclinic structure found for CmF₄.

Under microscopic examination by Eugene Staritzky of this Laboratory, the curium tetrafluoride appeared as light greenish-tan aggregates with a crystal size of a few tenths of a micron. The mean refractive index was 1.62. The absorption spectrum, as viewed through a Zeiss prism spectrometer eyepiece, showed a single very

TABLE I (Å. UNITS)

	ao	bo	Co	β	Ionic radius (IV)
UF₄⁵	12.82 ± 0.06	10.74 ± 0.05	8.41 ± 0.05	$126^{\circ}10' \pm 30'$	0.936
NpF₄⁵	$12.70 \pm .06$	$10.64 \pm .05$	$8.33 \pm .05$	$126^{\circ}10' \pm 30'$,926
PuF₄⁵	$12.62 \pm .06$	$10.57 \pm .05$	$8.28 \pm .05$	$126^{\circ}10' \pm 30$.90°
AmF_4	$12.49 \pm .06$	$10.47 \pm .05$	$8.20 \pm .05$	$126^{\circ} \pm 1^{\circ}$. 895
CmF₄	$12.45 \pm .06$	$10.45 \pm .05$	$8.16 \pm .05$	$126^{\circ} \pm 30'$,88

A 20-30 microgram pellet of air-dried curium trifluoride, precipitated from aqueous solution, was transferred into a sintered pre-fluorinated calcium fluoride crucible. The crucible was inserted into a nickel fluorinator⁴ and the fluorinator evacuated. Tank F2, which had been through a NaF trap to remove HF, was then used to fill the fluorinator to 1 atmosphere pressure. The fluorinator was heated to 400° over a one-half hour period, held at 400° for one hour, then at 300° for one hour, and finally cooled down to room temperature. A slow stream of fluorine was passed through the apparatus during this cycle. After the fluorine was displaced by helium gas, the curium compound was transferred to a Pyrex X-ray capillary and sealed off in air.

Initially, an exposure of 2 hours was made, using 114.6 mm. diameter camera with no-screen film and unfiltered copper radiation. This gave a good quality powder pattern of monoclinic CmF₄. A 20-hour exposure of the same sample was made

(1) This work was sponsored by the U. S. Atomic Energy Commission. It is a joint project of the Argonne National Laboratory, the University of Chicago and the Los Alamos Scientific Laboratory.

(2) A. M. Friedman, A. L. Harkness, P. R. Fields, M. H. Studier, J. R. Huizenga, *Phys. Rev.*, **95**, 1501 (1954).
 (3) L. B. Asprey, F. H. Ellinger, S. Fried and W. H. Zachariasen,

THIS JOURNAL, 77, 1707 (1955)

(4) L. B. Asprey, ibid., 76, 2019 (1954).

strong, narrow band at 452 millimicrons, which is not shown by Cm(III).

The existence of the compound CmF₄ illustrates the difficulties of deriving chemical conclusions from the electronic configurations assigned to the "actinide elements."⁷ It is clear, and perhaps surprisingly so, that the stability of the 5f⁷ half-filled shell in curium is markedly less than the stability of the corresponding 4f7 half-filled shell in gadolinium. The present results re-enforce earlier observations that detailed predictions of the valence states of these elements may not be properly made on the basis of analogy to the lanthanide series.8

(5) W. H. Zachariasen, Acta Cryst., 2, 388 (1949).
(6) G. T. Seaborg, "The Actinide Elements," Chap. 18, National Nuclear Energy Series, IV-14A, McGraw-Hill Book Co., New York, N. Y., 1954.

(7) Ibid., Chapter 17.

(8) R. A. Penneman and L. B. Asprey, Proc. International Conference on Peaceful Uses of Atomic Energy, Geneva, 1955, 7, 355-362 (Pub. 1956).

LOS ALAMOS SCIENTIFIC LABORATORY					
P. O. Box 1663	L. B. ASPREY				
Los Alamos, New Mexico	F. H. Ellinger				
Argonne National Laboratory					
P . O. Box 299	S. Fried				
LEMONT, ILL.					
DEPARTMENT OF PHYSICS					
UNIVERSITY OF CHICAGO	W. H. ZACHARIASEN				
CHICAGO, ILL.					
RECEIVED JULY 26,	1957				